

Ablative thermal protection systems for entry in Mars atmosphere.

A presentation of materials solutions and testing capabilities

Jean-Marc BOUILLY, Francine BONNEFOND, Ludovic DARIOL, Pierre JULLIEN, Frédéric LELEU

Prepared for

Presentation Outline

- ExoMars mission overview
- ExoMars Descent Module
- Norcoat-Liege
 - Composition and manufacturing
 - Heritage
- Qualification for Mars Missions
- Test facilities
- Modeling
- Norcoat Liege preferred to Alternative Solutions
- Growth potential
- Conclusion

ExoMars Mission Overview

- Launch in 2011 (backup 2013)
- Carrier Module will release Descent Module
- Payloads to land on the surface
 - Rover + Pasteur Payload for exobiology and geological research
 - Geophysics/Environment Package
 (GEP) for Martian geophysics and
 ambient conditions

from ASTRIUM / EADS-ST phase A study

ExoMars Descent Module: Main features (from ASTRIUM / EADS-ST phase A study)

- ~ 3.80 m diameter
- ~ 1200 kg
 - TPS = Norcoat-Liege on Frontshield & Back-Cover

- Frontshield 180 kg (TP ~50%)
 60 large panels 10 mm
 + 50 small panels 6 mm
- Back-Cover 180 kg (TP ~25%) 80 panels 6 mm

TPS trade-off Norcoat Liege preferred to Alternative Solutions

AQ60

- low density silica / phenolic material used for Huygens heatshield
- Norcoat-Liege allows a simpler design, an easier implementation and a slightly lower mass budget

PICSIL

- low density silicone-based ablator baseline for European CTV studies. (1995-96)
- less optimized than Norcoat-Liege for a mission to Mars, due to the lower thermal solicitations
- higher maturity of Norcoat-Liege

NORCOAT® LIEGE Composition and manufacturing

PROCESS SUMMARY

- Realization of panels in an heated press by cork powder agglomeration
- Cutting, machining and forming
- Bonding under pressure on the equipment
- Possibility of outgassing treatment for space applications
- Applicable on developable or not very complex surfaces

CHARACTERISTICS

- Density: 0.47
- Thickness: from 1.5 to 150 mm

Norcoat-Liege heritage ARD cone & back-cover

- Implementation of many singularities
 - thrusters, TPS experiments, measurement devices, antennas, access doors, etc...
- Successful flight on October 21st 1998
- Very nice aspect after recovery

Norcoat-Liege heritage BEAGLE 2 Frontshield & back-cover

- 31 tiles on Frontshield
 - 9 mm, 3.9 kg total mass (< 4.5 kg/m²)</p>
- tiles + several singularities on Back-Cover
 - 3 to 6 mm, 2.0 kg total mass (< 2.5 kg/m²)
- Very late design modifications implemented

Norcoat-Liege adaptation to Mars missions

EADS
SPACE
TRANSPORTATION

- Outgassing: elaboration of appropriate thermal treatment
 - Selection of optimal : Temperature, Vacuum level, Duration
- Stringent cleanliness conditions to meet decontamination / sterilisation requirements (planetary protection regulations)
 - Screening and selection of appropriate method based on medical experience
 - Two different processes established for FS & BC
- Dust erosion (joined CEA-CESTA / EADS-ST approach)
 - Modelling
 - Test facilities

Bonding in class 100 room of sterilised tiles for Beagle2 back-cover

Norcoat-Liege Qualification for Mars Missions (1) Stagnation point tests

- IPM Russia
 - Air and CO2
 - Up to ~1100 kW/m²
- COMETE
 - Air ; up to ~2000 kW/m²
- VKI Belgium
 - Comparison Air / CO2
 - Up to ~2000 kW/m²
- → Very good behaviour
- → No noticeable difference under air or CO2

Norcoat-Liege Qualification for Mars Missions (2) Tangential flow tests - EADS-ST SIMOUN facility

- BEAGLE 2
 - $-CO_2$
 - Up to ~800 kW/m²
- NETLANDER
 - Air
 - up to ~1800 kW/m²
- → Very good behaviour of the whole arrangement (including joints, steps & gaps)
- → Capability of the material certainly significantly higher than the experienced test results (limited to required values)

Test exploitation & determination of material thermal characteristics (Beagle2)

- AMARYLLIS 2D model, with pyrolysis and surface recession
- iterative process to optimise the restitution of measured temperatures, compared to computed ones.
- Elaboration of material thermal model, including ablation and pyrolysis phenomena

SIMOUN facility overview

SIMOUN SET UP:

- Generator
- Test chamber
- Vacuum system
- Sample in flow

SIMOUN Main Characteristics

POWER
STAGNATION PRESSURE
STAGNATION ENTHALPY
FLOW
RUN TIME

STAGNATION POINT

NOZZLE: Contoured, Mach number 4.5

SAMPLE: Diameter 50 mm

Pressure: 50 to 200 mbar

Heat flux: 700 to 2500 kW/m² *

Extended field:

Pressure: 200 to 500 mbar

Heat flux: 2500 to 4000kW/m²

For tests duration <1mn: up to 6000kW/m²

expected (still to validate)

*: cold wall conditions

6 MW 1 TO 18 BAR 4 TO 14 MJ/Kg(air) air, N2, CO2 a few sec. to 30 min.

FLAT PLATE & WEDGE

NOZZLE: Superelliptic, Mach number 5

SAMPLE: 300 x 300 mm², 150 mm thick

Angle of attack: 0 to 16°

Pressure: 3 to 180 mbar

Heat flux: 20 to 1600 kW/m²*

For tests duration <1mn : up to 2000kW/m² expected (still to validate)

*: cold wall conditions

Dust erosion Phenomenon and Methodology Overview

Step I : particles description

- ✓ Nature and size
- ✓ Distribution versus altitude
- ✓ Particles velocity

Step II: shock particles interaction

- ✓ Particles modification (break up)
- √ Flow perturbation

Step III: shock layer crossing

✓ Particles deceleration, deviation and heating

Step IV : particles TPS interaction

- ✓ TPS erosion
- ✓ Heat fluxes increase on TPS : due to wall roughening and earlier transition to turbulence

Step V : debris

- ✓ Effects on the boundary layer
- ✓ « Debris shielding »

Test facilities AQTIL

EADS
SPACE
TRANSPORTATION

- Study of alumina particles impact on Ariane 5 (due to boosters separation rockets)
- Adaptation of existing plasma torch
- Development of specific injection device
- Implementation of several diagnostic techniques for control of particles seeding
 - Velocity
 - Homogeneity
 - State (solid or melt)
- → facility is now available and fully qualified for TPS characterisation under particles impingement

SIMOUN Adaptation for particle injection

- Application on SIMOUN of the same methodology as on AQTIL:
 - Nozzle exit particle injection
 - Specific diagnostics
- To be validated in :
 - Low ambient pressure
 - Supersonic flow
- First step: Stagnation point (in 3rd quarter 2006)
- Then, implementation completed for plane board tests

R & D approach

- Detailed characterisation work performed during the past years
- In association with local Research Centers (CNRS, CRPP)
- Influence of main molecules constituting the material
- Analysis of degradation process
- → Very interesting results, especially wrt stability at high temperature
- → Basis for thorough understanding and future improvements

Norcoat-Liege after carbonization @ 2000°C

Growth potential

- Better comprehension of the role of each constitutive molecule
 → basis for a more detailed theoretical modeling
 →enables future tailored improvements of the material.
- Two attractive perspectives to enlarge the use of this type of material to a wider domain.
 - Inclusion of a mechanical reinforcement in the material, in order to strengthen the char layer.
 - Search for a lightened material,
 in view of application on aft body
 of entry probes

Conclusion

- EADS-ST ready to bring a significant contribution to ExoMars development and future success
 - Thermal protection
 - Qualification facilities
 - More generally, all the disciplines required for atmospheric entry (AED, ATD,...)
- These technologies and techniques can obviously also serve any future scientific mission with atmospheric entry probe

Thank you for attention

Any questions?